7th International Convention **OF ENVIRONMENTAL LAUREATES** FREIBURG, GERMANY · 15 - 18 MARCH 2018

Young Talents Day

IN COOPERATION WITH

UWC ROBERT BOSCH COLLEGE. FACULTY OF ENVIRONMENT AND NATURAL RESOURCES OF THE UNIVERSITY OF FREIBURG & REGIERUNGSPRÄSIDIUM FREIBURG

COLLEGE

7TH INTERNATIONAL CONVENTION OF ENVIRONMENTAL LAUREATES FREIBURG, GERMANY · 15 - 18 MARCH 2018

Stephan Schindele

Research Project Agrophotovoltaics, Fraunhofer Institute for Solar Energy Systems

"Agrophotovoltaics: Power and Food. Combining PV with Crop Harvesting"

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

Agrophotovoltaics (APV): Power and Food **Combining PV with Crop Harvesting**

Stephan Schindele Fraunhofer ISE

Presentation,

GEEÖRDERT VON

für Bilduna und Forschund

Bundesministeriun

7th International Convention of **Environmental Laureates**

Freiburg, 17.03.2018 www.ise.fraunhofer.de

AGENDA

- Problem
- Solution
- Outlook

2

AGENDA

- Problem
- Solution
- Outlook

Problem

PV-ground mounted

- Requires (limited) arable land \rightarrow land-use conflicts
- Cultural landscape is impacted \rightarrow social acceptance problems
- Growing energy demand globally
- Energy sector responsible for 85 % of CO2-emissions

Agriculture

- Crops suffer from too much solar radiation \rightarrow adaptation to climate change needed
- Increasing economic pressure on arable land \rightarrow increasing land prices
- Water becomes/is a scarce good •
- Growing food demand globally
- Agricultural sector responsible for 7,5 % of CO2-emissions

Nuclear phase-put by 2022, phase-out of coal by 20??, ambitious RE-goals until 2050

GEEÖRDERT VON

für Bilduna und Forschund

- Arable land becomes scarce \rightarrow resource efficient land-use becomes/is important
- High demand of intersectorial and transdisciplinary technology development
 - \rightarrow dual-use of arable land \rightarrow Agrophotovoltaics (APV)

ISE

Problem: Case Study Germany RE-targets until 2050

- Energy Transformation has only "recently" started
- Best sites for RE-implementation are already taken
- Energy efficiency targets are very ambitious
- Sector coupling: electricity sector merges with heat/cooling and transport sector
- Demand for land continues to be high \rightarrow 18 % of arable land occupied for energy production
- Paris Agreement pressurizes political, societal, and business stakeholders

Share of RE 1990 – 2015 and goals by 2050

Source: AGEE-Stat, BMWi / own layout

GEEÖRDERT VON

für Bilduna und Forschund

AGENDA

- Problem
- Solution
- Outlook

6

Solution: Fraunhofer ISE patent on lightmanagement Simulations of radiation on ground level under APV

- Homogeneous distribution of radiation underneath APV possible
- Sufficient radiation during vegetation phase of crops feasible
- Electricity losses compared to South orientation are low: -5 %
- Peak-load shifted into morning or afternoon hours due orientation

GEEÖRDERT VON

Solution: Case study Germany Suitable crops – Part I

- Shade tolerant crops exist
- Increase in yield and quality improvement through shading is possible

Solution: Case study Germany Suitable crops – Part II

Classification of Germany's most relevant economic (food) plants in agriculture:

*depending on the type

GEFÖRDERT VOM

und Forschung

Solution: Case study Germany APV-Prototype in Heggelbach, Proof of Concept

- Bifacial PV-Modules, Spinnanker fundaments, Lightmanagement
- Arable land not considered in EEG market-based mechanism \rightarrow no FiT
- Only 5 % of arable land is lost/sealed \rightarrow yet, 100 % of land accounts sealed
- Farmer does not receive EU-subsidy anymore for his land
- Farmer receives land lease and uses > 40 60 % of the electricity
- Winter wheat, clover grass, potato and celery \rightarrow approx. 15 % less yield

GEFÖRDERT VON für Bilduna

Bundesministerium

und Forschund

Solution: Case study Germany First harvest: Winter wheat and Clovergrass

- Winter wheat: yield reduction by 19 % under APV
- Clovergrass: yield reduction by 5 % under APV (4 cuts)

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Solution: Case study Germany APV-Levelized Cost of Electricity (LCOE) compared to PV

- APV (Prototype) cannot (yet) compete with PV-GM
- APV is already today competitive with small PV-rooftop installations

GEFÖRDERT VOM Bundesministerium für Bildung und Forschung

Solution: Case study Germany Increase of land-use efficiency by over 60 %

Separate Land Use on 2 Hectare Cropland

Combined Land Use on 2 Hectare Cropland: Efficiency increases over 60%

PV-cropping is feasible and synergies generate additional income for farmers

13 © Fraunhofer ISE

GEFÖRDERT VOM Bundesministerium für Bildung

und Forschung

Solution: Case study Germany APV Potential: 1 hectare - 1 APV plant - 1 farmer

- Basic information/data:
 - 300.000 farmers
 - 13.300.000 hectares arable land
 - 700 kWp APV on 1 hectare land
 - 42 GWp total PV capacity installed by 2017
 - Between 250-300 GWp PV needed to meet NDC-goals

- Calculation on the APV potential:
 - 300.000 ha = 210 GWp APV
 - 2,3 % of arable land required
 - Very decentralized and evenly distributed

GEEÖRDERT VON

für Bildung und Forschund

Global problems, global solutions, global market trends Best practice examples of APV worldwide

- (A) Italy, R.E.M. Spa, 3x 3 MWp each, 2011
- B) France, Straßburg, 300 kWp, E. Gimbel, 2016
 - Innovation auction: 45 MWp APV between 2017 2019
- (C) Chile, 3x APV-systems, Santiago, Fraunhofer CSET, 2016
- (D) Japan, Solar Sharing, Ministry of Agriculture, Forest and Fishery, Higashi, 2013, > 600 APV systems installed
- E (E) China, Ningxia, 700 MWp, Huawai, 2016
- (F) Egypt, SEKEM, Almaden, Kairo, 90 kWp, 2017

AGENDA

- Problem
- Solution
- Outlook

16

Outlook APV-Vision

- Increase land-use efficiency
 - Farmers that produce energy <u>without</u> reducing food production
- Local value added
 - Farmers supplying themselves and their local neighborhood with electricity, heat, and fuel for transportation (P2G)
- Electrification of land-use machinery
 - Replace diesel-fuel with APV-electricity
 - Implementation of agrar-robotics
- Landscape integrated PV (LiPV)
 - Colored PV
 - Landscape modelling
 - Greening the desert

GEFÖRDERT VOM

Outlook APV innovation process: next steps

Technology-Push

- Horizontal Level = Diversification of APV
 - e.g. vegetable, fruit, berries, wine, herbs, animals, hop, and aquacultures, etc.
- Vertical Level = Innovation potential APV
 - e.g. organic PV, spectral analysis, colored PV, construction, water-irrigation, storage, etc.

Demand-Pull

- Create a small APV-market, 40 MWp/a triggering industry innovation
- Technical/scientific monitoring/analysis
- Quality assurance and certification
- Technology Transfer into other markets

Thank you very much for your attention!

Stephan Schindele, Fraunhofer ISE stephan.schindele@ise.fraunhofer.de www.agrophotovoltaik.de www.ise.fraunhofer.de

19 © Fraunhofer ISE

GEFÖRDERT VOM für Bildung

7th International Convention **OF ENVIRONMENTAL LAUREATES** FREIBURG, GERMANY · 15 - 18 MARCH 2018

Young Talents Day

IN COOPERATION WITH

UWC ROBERT BOSCH COLLEGE. FACULTY OF ENVIRONMENT AND NATURAL RESOURCES OF THE UNIVERSITY OF FREIBURG & REGIERUNGSPRÄSIDIUM FREIBURG

COLLEGE